A note on generalized absolute Cesàro summability

نویسنده

  • Hüseyin Bor
چکیده

In this paper, a known theorem dealing with | C, 1 |k summability methods has been generalized under weaker conditions for | C, α, β ; δ |k summability methods. Some new results have also been obtained. AMS subject classifications: 40D15, 40F05, 40G99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized Absolute Cesàro Summablity Factors

In this paper, we prove a known theorem dealing with φ− | C, α, β |k summability factors under more weaker conditions. This theorem also includes several new results.

متن کامل

On absolute generalized Norlund summability of double orthogonal series

In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...

متن کامل

A New Factor Theorem for Generalized Cesàro Summability

In [6], we proved a theorem dealing with an application of quasi-f-power increasing sequences. In this paper, we prove that theorem under less and weaker conditions. This theorem also includes several new results.

متن کامل

A One-sided Theorem for the Product of Abel and Cesàro Summability Methods

In this paper, a one-sided condition is given to recover .C; ̨/ summability of a sequence from its .A/.C; ̨C 1/ summability. Our result extends and generalizes the well known classical Tauberian theorems given for Abel and Cesàro summability methods. 2010 Mathematics Subject Classification: 40E05; 40G05; 40G10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010